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a b s t r a c t

We study the regulation of one-way station-based vehicle sharing systems through parking reservation

policies. We measure the performance of these systems in terms of the total excess travel time of all users

caused as a result of vehicle or parking space shortages. We devise mathematical programming based

bounds on the total excess travel time of vehicle sharing systems under any passive regulation (i.e., poli-

cies that do not involve active vehicle relocation) and, in particular, under any parking space reservation

policy. These bounds are compared to the performance of several partial parking reservation policies, a

parking space overbooking policy and to the complete parking reservation (CPR) and no-reservation (NR)

policies introduced in a previous paper. A detailed user behavior model for each policy is presented, and

a discrete event simulation is used to evaluate the performance of the system under various settings.

The analysis of two case studies of real-world systems shows the following: (1) a significant improve-

ment of what can theoretically be achieved is obtained via the CPR policy; (2) the performances of the

proposed partial reservation policies monotonically improve as more reservations are required; and (3)

parking space overbooking is not likely to be beneficial. In conclusion, our results reinforce the effective-

ness of the CPR policy and suggest that parking space reservations should be used in practice, even if

only a small share of users are required to place reservations.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

In recent years, vehicle sharing systems (VSS) have become an

ntegral part of transportation services offered by numerous cities

round the world. Such systems consist of a fleet of vehicles dis-

ersed across a city that users can rent for a short period of time.

his type of service may be considered an extension of traditional

ublic transport, which offers more flexibility and which enables

ore multi-modal journeys. With this added flexibility, more cit-

zens can shift from private vehicles to public transportation ser-

ices, potentially decreasing traffic congestion levels, encouraging

ore efficient land resource utilization (especially in city centers,

s fewer parking spaces are needed) and reducing air pollution and

reenhouse gasses emissions.

In this study, we focus on one-way station-based VSSs, such as

ike sharing and some car sharing systems. Such systems allow

sers to rent a vehicle from any station throughout a city (given

hat there is an available vehicle in that station), use it for a short

eriod of time and return it back to any station with an available

arking space. In the case of bike sharing systems, "parking spaces"
∗ Corresponding author. Tel.: +972 3 6408389.
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re in fact docking poles. However, for the remainder of the pa-

er, we use the term parking space to refer to one unit of vehi-

le storage of any kind. Some car-sharing systems are "free float-

ng" (rather than station-based). In such systems, vehicles can be

ented and returned at any point in the city. These systems do not

all within the scope of this study. For a detailed description of the

tructure of VSSs, the renting process, the types of users and the

ifferent operating models, see surveys by DeMaio (2009), Jorge

nd Correia (2013), Shaheen and Cohen (2007, 2012), Shaheen and

uzman (2011), Shaheen, Guzman, and Zhang (2010) and Demaio

nd Meddin (2014).

VSS operators face the difficult goal of meeting demands for ve-

icles and available parking spaces. Indeed, online reports on the

umber of vehicles in many VSSs show that stations frequently be-

ome empty or full (see, for example, http://bikes.oobrien.com/).

his difficulty mainly arises from the characteristics of the de-

ands for journeys throughout the day. These demand processes

re typically stochastic, asymmetric and heterogeneous in time.

he system cannot satisfy demand when a user who wishes to

ent a vehicle arrives at an empty station or when a user who

ishes to return a vehicle arrives at a full station, i.e., a sta-

ion with no vacant parking spaces. The latter scenario is typically

erceived as more severe, as a user who is unable to return a

ehicle is “trapped” in the system because she cannot complete

http://dx.doi.org/10.1016/j.ejor.2015.12.015
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the renting transaction until she finds an available parking space.

Contrary to this situation, a user who cannot rent a vehicle may

decide to use an alternative mode of transportation.

One-way VSS managers should aim to improve the quality of

service provided to its users, subject to the availability of resources.

In this study, we measure the quality of service by the total excess

time users spend in the system as a result of vehicle or parking

space shortages. The excess time of a user is the difference be-

tween the actual time she spends in the system (her exiting mi-

nus entering time) and her ideal travel time, i.e., the riding/driving

time between her origin and destination stations. Indeed, we be-

lieve that time is a major consideration of commuters in an urban

public transit system and that time is associated with the main

costs incurred by commuters. This is especially true in cities where

regular commuters can buy a monthly or annual subscription to a

VSS and to public transit access.

The fact that a user may not be able to use a VSS for her jour-

ney or may only be able to use this system for part of a jour-

ney may cause her additional damages apart from the time she

loses. The cost of this damage, in units equivalent to the cost of

time, can be added to the measured excess time. For example,

if a user needs to take a taxi rather than renting a shared car,

the excess cost of the taxi fare (as compared to the cost of rent-

ing a shared vehicle) can be weighted and added to the excess

time. While we use the term excess time throughout the paper, it

can be replaced with the term excess cost to refer to more gen-

eral conditions. This observation broadens the scope of our dis-

cussion and allows it to capture systems with diverse characteris-

tics, e.g., both bike sharing and one-way station-based car-sharing

systems.

Alternative performance measures for the quality of service in-

clude the proportion of empty or full stations, the percentage of

users who receive an ideal service and the percentage of users who

do not use the system at all, i.e., those who abandon the system.

All of these measures are correlated with excess time (see Kaspi,

Raviv, & Tzur, 2014), but they do not directly represent inconve-

niences experienced by the user. Excess time is also applicable to

situations wherein an ideal service cannot be provided at the de-

sired origin and/or destination stations but where a substitute ser-

vice can be provided at nearby stations. For example, if no vehicle

is available at the desired origin station, a user may rent a vehicle

from a nearby station. In such a case, the excess time is the net

additional time incurred as a result of using alternative modes of

transportation from the desired origin station to the actual renting

station.

To reduce the occurrence of vehicle and parking space short-

ages, system operators may take strategic or operational action.

Strategic actions involve deploying more stations or expand-

ing existing stations (see, for example, George and Xia (2011),

Lin and Yang (2011), Correia and Antunes (2012), Lin, Yang and

Chang (2013), Shu, Chou, Liu, Teo, and Wang (2013), Correia, Jorge,

and Antunes (2014) and Boyaci, Zografos, and Geroliminis (2015).

Operational actions may involve dynamically changing fleet sizes

and actively or passively regulating systems.

By active regulation, we refer to the redistribution of vehicles

throughout a system’s stations using repositioning trucks (in the

case of bike sharing systems) or by designated drivers (in the case

of car sharing). Raviv and Kolka (2013), Schuijbroek, Hampshire,

and van Hoeve (2013) and Vogel, Saavedra, and Mattfeld (2014)

devise methods for determining the desired daily initial inven-

tories in the stations, that repositioning should aim to achieve.

Kek, Cheu, Meng, and Fung (2009), Nair and Miller-Hooks (2011),

Benchimol et al. (2011), Angeloudis, Hu, and Bell (2012), Chemla,

Meunier, and Wolfer-Calvo (2013a), Raviv, Tzur, and Forma (2013),

Erdoğan, Laporte, and Calvo (2014), Erdoğan, Battarra, & Calvo,

2015, Forma et al. (2015), and others study static repositioning
perations. Contardo, Morency, and Rousseau (2012), Jorge, Correia,

nd Barnhart (2014), Kloimüllner et al. (2014) and Pessach, Raviv,

nd Tzur (2014) study dynamic repositioning operations. However,

epositioning of vehicles may be a costly procedure, especially in

ar sharing systems where each car is repositioned by a designated

river.

By passive regulation, we refer to mechanisms used to redi-

ect demand to improve VSS performance. Such mechanisms do

ot affect the true demand for journeys but may instead cause

sers to rent (return) vehicles at stations different from their

rue origin (destination) station. Fricker and Gast (2014) study a

ystem regulation under which each user declares two optional

estination stations and the system directs her to the less con-

ested one. Several studies focus on pricing regulations as means

f self-balancing VSSs (see, for example, Chemla, Meunier, Pradeau,

olfler Calvo, and Yahiaoui (2013b), Pfrommer, Warrington, Schild-

ach, and Morari (2014) and Waserhole, Jost, and Brauner (2013)).

e note that the study of Waserhole et al. (2013) does not fall

ithin our definition of passive regulations since they assume that

he demand is elastic to the price.

In a previous paper, Kaspi et al. (2014) proposed implementing

arking space reservations in one-way VSSs in order to improve

he quality of service provided by such systems. In particular, they

tudied a complete parking reservation (CPR) policy in which all

sers are required, upon renting a vehicle, to reserve a parking

pace in their destination station. If a reservable parking space is

vailable (i.e., not occupied and not reserved), it is reserved for the

ser, and will not be available to other users from the moment the

enting period starts to the moment the user returns the vehicle

o the reserved parking space. If upon renting a vehicle there are

o reservable parking spaces at the destination, the renting trans-

ction is denied. The user may then try to make a reservation at

nother station close to her destination or may decide to use an

lternative mode of transportation.

Under the CPR policy, a reserved parking space remains empty

ntil the user returns her vehicle. In the meantime, other users

annot use this resource, i.e., it is blocked. The tradeoff in im-

lementing such a policy is that while some users are guaran-

eed an ideal service (as they will certainly be able to return

heir vehicle at their desired destination) other users may receive

oorer service due to the blocking of parking spaces. In Kaspi et al.

2014), the CPR policy was compared to the base policy entitled

o-reservations (NR), using a Markovian model with simplifying

ssumptions and an enhanced discrete event simulation model.

oth policies are complete in the sense that all system users are

equired to follow the same regulations. The results of the analysis

how that the CPR policy outperforms the NR policy with respect

o several service-oriented performance measures.

In this study, we examine whether and to what extent fur-

her reductions of the total excess time may be achieved through

he use of any other passive regulation and through the use of

ny other parking reservation policy in particular. We use math-

matical programming models to devise lower bounds on the to-

al excess time that users spend in the system under any pas-

ive regulation and under any parking reservation policy. We con-

ider the benefits of limiting requirements to make reservations to

nly some journeys. We refer to these policies as partial reserva-

ion policies, which combine the two extreme (complete) policies

n different ways. We evaluate the performance of all policies and

ompare them to the lower bounds.

We note that while mathematical programming may not be

erceived as a natural approach for analyzing such a system, it

s advantageous in its ability to process an extremely large num-

er of possible occurrences. Conversely, in order to model the

SS using stochastic tools (for example, closed queuing systems),

ome simplifying assumptions are required to make the model



M. Kaspi et al. / European Journal of Operational Research 251 (2016) 969–987 971

t

s

v

t

t

t

s

t

e

d

s

l

u

t

c

i

i

e

b

t

t

p

b

s

u

u

e

S

e

p

t

a

A

t

t

c

2

o

t

w

d

s

e

v

t

I

p

i

t

n

i

w

t

t

r

m

t

i

r

l

u

t

p

I

t

c

b

c

c

d

c

t

w

b

M

o

m

2

m

t

p

i

n

i

s

t

a

p

a

t

a

b

t

a

t

s

t

T

n

d

i

j

j

H

i

t

o

p

p

d

ractable. Fricker and Gast (2014) and Kaspi et al. (2014) make

implifying assumptions regarding user behaviors when users face

ehicle/parking space shortages. George and Xia (2011) assume

hat station capacities are unlimited. Indeed, using these assump-

ions, tractable models are generated. However, they do not reflect

he true dynamics of VSSs, as interactions between neighboring

tations due to shortages are neglected.

This study focuses on improving VSSs from a user’s perspec-

ive. Indeed, operators have their own perspectives based on rev-

nues and costs, which play a crucial role when making strategic

ecisions on system design, active regulation, pricing, etc. In the

hort run, when a reservation is denied, the operator may indeed

ose revenue, thus potentially generating a conflict between the

ser’s and operator’s goals. However, under an effective reserva-

ion policy, this would provide better service to users and thus in-

rease revenues in the long run. Therefore, when optimizing park-

ng reservation policies, it is reasonable to consider only the qual-

ty of service as an objective function.

The contributions of this paper are as follows. First, using math-

matical programming models, we provide for the first time lower

ounds on the performance of a VSS, measured by the total excess

ime, under any passive regulation and under any parking reserva-

ion policy. Second, we introduce the concept of partial reservation

olicies. We examine three different partial policies that are each

ased on a simple sound principle that is easy to control by the

ystem’s managers and communicate to the users. We define the

ser behavior under these policies and examine their performance

sing discrete event simulation of real world systems. Third, we

xamine the potential benefit of parking space overbooking.

The remainder of the paper is organized as follows. In

ection 2, a generic description of the VSS is presented, and math-

matical models are formulated to bound VSS’s performance under

assive regulations and under parking reservation policies in par-

icular. In Section 3, a behavior model of VSS users is presented,

nd the proposed partial parking reservation policies are described.

utopian overbooking policy is presented at the end of this sec-

ion. A description of two real world VSSs and numerical results on

heir performance are presented and discussed in Section 4. Con-

luding remarks are provided in Section 5.

. Lower bounds on the total excess time in a VSS

As noted in the introduction, the operational actions that a VSS

perator can take in order to deliver high quality service can take

wo forms: active regulations and passive regulations. In this study,

e focus on passive regulations, i.e., mechanisms used to redirect

emand.

VSSs are decentralized systems, that is, each user makes deci-

ions regarding her planned itinerary so as to minimize her own

xpected excess time. Such decisions depend on the availability of

ehicles or parking spaces at the system’s stations at the renting

ime and on the user’s expectations regarding future availability.

n addition, user’s decisions are subject to the passive regulation

rescribed by the system. Under passive regulations, a system may

nfluence a user’s decisions by limiting her choices or by incen-

ivizing her to prefer certain itineraries. However, the system does

ot assign itineraries to the users. For example, under the CPR pol-

cy, if a user cannot make a parking reservation at a certain station,

hile she is not allowed to travel with a shared vehicle to that sta-

ion, she is free to determine her actual alternative itinerary. From

he operator’s point of view, the question is: how should a passive

egulation be designed so that the outcome of all users’ decisions

inimizes the expected total excess time?

A passive regulation can be formally defined as a mapping of

he state of the system and the demand for journeys to a set of

tineraries permitted for each journey. The set of possible passive
egulations is extensive. However, a major share of these regu-

ations may be difficult to implement or to communicate to the

sers. In this study, we introduce and analyze regulations that take

he form of parking reservation policies, which are based on sim-

le principles and which are easy to communicate to the users.

n order to assess potential improvements that may be achieved

hrough passive regulations in terms of the expected total ex-

ess time, we formulate mathematical programs that provide lower

ounds. First, we devise a lower bound on the expected total ex-

ess time under any passive regulation. Second, as this study fo-

uses on parking reservation policies, we devise a tighter bound

esigned specifically for any parking reservation policy.

The rest of this section is organized as follows. Section 2.1 in-

ludes a description of a VSS and presents assumptions concerning

he demand. Section 2.2 presents a mixed integer program (MILP)

hose optimal value is a lower bound on the excess time that may

e achieved under any passive regulation. Section 2.3 modifies the

ILP formulation to account for passive regulations that involve

nly parking reservations, thus generating a tighter bound. A for-

al proof for the validity of this lower bound is then presented.

.1. Description of the VSS

In this section, we discuss information needed in order to

odel a VSS. Such information is used in mathematical models

hat are presented in this section and in the user behavior model

resented in Section 3. Information needed to describe the system

s as follows:

• The number of stations in the system
• The number of parking spaces in each station (referred to as

the station capacity)
• The initial inventory level (number of vehicles) at each station
• The expected travel time between any two stations using

shared vehicles.
• The expected travel time between any two stations using an

alternative mode of transportation.

Note that information on the locations of the stations is not

eeded. In order to describe the relations between the stations,

t is enough to specify the traveling time between each pair of

tations. The distance between the stations, the topography of

he city, congested roads and other considerations are taken into

ccount in the traveling times. In some cases, due to vehicle or

arking space shortages, users may roam to nearby stations (using

n alternative mode of transportation) or may decide to abandon

he system altogether and make their entire journey using an

lternative mode of transportation. Therefore, traveling times

etween any two stations using an alternative mode of transporta-

ion must be determined as well. Travelling times can represent

ny additional cost or inconvenience incurred by the user over

he course of her journey in addition to the actual value of time

pent in the system. In bike sharing systems, walking constitutes

he alternative mode of transportation for most potential journeys.

his is also the case in car-sharing systems for roaming between

eighboring stations.

Demand for each journey is defined by the desired origin and

estination stations and by the desired starting time. An underly-

ng assumption of the models introduced in this paper is that all

ourneys in a system start and end at VSS stations. In reality, users’

ourneys start and end at general locations (GPS points) in a city.

owever, such fine spatial granularity is not required when mak-

ng strategic decisions on reservation policies. Moreover, informa-

ion on exact origins/destinations is currently unavailable to VSS

perators. Finally, we assume that an alternative mode of trans-

ortation is always available to users while a shared vehicle (resp.,

arking space) may or may not be available at the origin (resp.,

estination).
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Fig. 1. Examples of journey itineraries.
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2.2. A lower bound on the total excess time under any passive

system regulation

Our goal in this section is to establish a lower bound on the

total excess time that results from users’ decisions under any pas-

sive regulation. Given the system’s characteristics and journey de-

mand realization over a predetermined planning horizon (typically

a day), we formulate an optimization problem that centrally selects

the itineraries of the VSS’s users so as to minimize the total excess

time.

The solution value of this optimization problem is a lower

bound on the total excess time that may be achieved under any

passive regulation due to the following two assumptions on which

the optimization problem is based:

1. All demands for journeys are known in advance.

2. A central planner determines the itinerary of each user in a way

that benefits the entire system. The justification of this assump-

tion is that any solution selected by the central planner may be

selected by the users under some passive regulation.

In practice, each user determines her own itinerary based on

her individual objectives and based on information that she has

access to. Thus, the excess time of an optimal assignment obtained

by a central planner with full information is a lower bound on the

excess time resulting from any passive regulation policy, i.e., a pol-

icy that somehow limits user itinerary selection options. We note

that due to the system’s limited resources, this bound is typically

strictly positive and is thus better than the trivial bound of zero

excess time (no shortages of any type).

In practice, the demand for journeys is a stochastic process.

Therefore, the average solution value of the optimization problem

for numerous demand realizations, drawn from a given stochastic

process, serves as an estimator of a lower bound on the expected

total excess time under any passive regulation.

A demand realization is described by a set of journeys where

each journey is characterized by an “origin-destination-time” tu-

ple. Each journey can be materialized by one of several possible

itineraries. We assume that a possible itinerary can take one of the

following forms:

a) Use a shared vehicle from the origin to the desired destination.
b) Use a shared vehicle from the origin station to another sta-

tion with an available parking space and then use an alterna-

tive mode of transportation to reach the desired destination.

c) Use an alternative mode of transportation to reach a station

with an available vehicle and then use a shared vehicle from

this station to reach the desired destination.

d) Use an alternative mode of transportation to reach a station

with an available vehicle and then use a shared vehicle from

this station to another station with an available parking space.

Then, from this station, use an alternative mode of transporta-

tion to reach the desired destination.

e) Use an alternative mode of transportation from the origin to

the desired destination.

We refer to stations where vehicles are actually rented (resp.,

eturned) as renting (resp., returning) stations. Upon attempting to

eturn a shared vehicle, a user may be required to wait at the re-

urning station until a parking space becomes available and to then

roceed with her itinerary (leave the system or continue with an

lternative mode of transport). We assume that users will not wait

or a vehicle to become available in a renting station, as informa-

ion on the number of vehicles in each station is available to them

n real time. Instead, users would roam to a nearby station or use

n alternative mode of transportation for the entire journey.

In Fig. 1, we present an example with several possible

tineraries that materialize the journey of a user who wishes to

ravel from station A to station B. The travel time of each journey

egment is depicted on the corresponding arc, and itinerary excess

imes (denoted by X) are presented below each graph. For exam-

le, in Fig. 1(b), the excess time is 5 because the travel time is 12

in comparison to a travel time of 7 in the case of the ideal jour-

ey shown in Fig. 1(a)). In Fig. 1(a)–(e), we, respectively present

examples of each of the five itineraries presented above. Note that

because the excess time associated with using an alternative mode

of transportation for an entire journey (as in 1(e)) is 14, itineraries

with longer excess time periods such as 1(f) will never be selected

by a user and can thus be disregarded by the central planner.

Each possible itinerary can be defined by its renting station, re-

turning station and renting time. The returning time is determined

by the renting time and by the traveling time between the two

stations. Waiting times at the returning stations are not considered
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Fig. 2. Network flow graph representing the flow of vehicles in the system.

w

I

c

i

s

l

a

t

t

a

v

p

t

I

m

o

j

h

a

l

T

i

o

H

n

p

t

t

t

a

f

t

o

c

r

t

(

i

b

o

t

c

e

fl

a

t

w

a

z

a

s

a

s

t

i

e

p

o

t

l

p

e

n

hen calculating itinerary times, as they are calculated separately.

n addition, a journey can be materialized by an itinerary that in-

ludes only an alternative mode of transportation. Clearly, such an

tinerary is not associated with renting and returning stations.

We define a set of possible events where each event is a time-

tation tuple that refers to a renting or returning time and to the

ocation of a possible itinerary. We assume without loss of gener-

lity that at most one event can occur at each station at a given

ime. At the time of each event, the state of the corresponding sta-

ion is defined by the number of vehicles parking at the station

nd by the number of users that are (possibly) waiting to return

ehicles at the station.

The assignment of itineraries to users, carried out by the central

lanner, is constrained by several considerations that are related

o the availability of vehicles and parking spaces at the stations.

n Fig. 2, we use a network flow graph to present vehicle move-

ents within a system over time. We use the possible itineraries

f a journey depicted in Fig. 1 as an example, assuming that the

ourney starts at time 20. Each possible itinerary that involves ve-

icle movement [itineraries (a)–(d) of our example] is depicted by

black solid arc from a node that represents the renting time and

ocation to a node that represents the returning time and location.

he costs of these arcs are the excess times associated with their

tinerary and their capacities are 1. The use of an alternative mode

f transportation is not directly reflected by arcs in the network.

owever, node times and arc costs are affected by the use of alter-

ative modes of transportation. For example, for itinerary (c) de-

icted in Figs. 1 and 2, the use of a shared vehicle begins at sta-

ion D at time 26 even though the itinerary starts at station A at

ime 20. The cost of this arc is 5, representing the excess time of

he itinerary.

To depict a full demand realization we construct a network such

s the one shown in Fig. 2, with a set of nodes and arcs created

or all possible itineraries of all demanded journeys. The nodes in

his network correspond to events. Each pair of consecutive nodes

n the time axis, which are associated with the same station, is

onnected by two “horizontal” parallel arcs. The solid gray arc rep-

esents the number of vehicles parked in the station between the

wo events, and the dashed arc represents the number of vehicles

and drivers) waiting in the station for a vacant parking space dur-

ng this time interval. As the two nodes are consecutive, the num-

er of vehicles parking and waiting in the station does not change

ver this time interval. The cost of the parking arcs is zero, and
heir capacity is equal to the capacity of the station. The per unit

ost of the waiting arcs equal to the time difference between their

nd nodes and their capacity is not limited. For example, if the

ow on the waiting arc that connects nodes (B,27) and (B,32) has

value of 3; the excess time incurred as a result of waiting in sta-

ion B between time periods 27 and 32 is 15.

The network also includes one source node for each station,

ith a supply that represents the initial inventory of the station

nd one sink node. The net demand of the rest of the nodes is

ero. A feasible assignment of itineraries to journeys is obtained as

feasible integer flow on this network with additional side con-

traints. These constraints limit the total flow on all the itinerary

rcs associated with each journey to a maximum value of 1. A

olution where the total flow on the arcs associated with a cer-

ain journey takes a value of zero represents the selection of an

tinerary that involves an alternative mode only, e.g., Fig. 1(e). The

xcess time incurred in such a solution is the sum of the flow costs

lus costs incurred as a result journeys that use alternative modes

nly. Thus, our lower bound is obtained by minimizing this excess

ime. We solve this optimization problem using the MILP formu-

ated below. Next, the notation used to formulate this model is

resented.

Indices:

s Station

t Time

j Journey

i, k Itinerary

Parameters:

S Set of stations

J Set of journeys

Cs Capacity of station s

L0
s Initial vehicle inventory of station s

E Set of possible events [(s, t) tuples]

I j Set of possible itineraries of journey j, we also use I ≡ ∪
j∈J

I j

Xi The excess time of itinerary i (not including waiting time)

Ds,t The time difference between event (s, t) and the next event at

station s

B(s, t) The set of itineraries in which a vehicle is rented at station s

at time t

F (s, t) The set of itineraries in which a vehicle is returned at station s

at time t

(s, t)′ The event that precedes event (s, t) at station s

In addition, we define two artificial events (s, 0) and (s, H) for

ach station s that denote the beginning and end of the plan-

ing horizon, respectively. Note that X represents the excess time
i
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associated with selecting itinerary i. This excess time includes the

additional time incurred by using alternative modes of transporta-

tion to materialize an entire journey or part of a journey. It does

not include additional excess time that the user may experience

as a result of waiting for a vacant parking space at the returning

station. This waiting time is reflected by the Ds,t parameter. With-

out loss of generality, the set I j includes only journeys with excess

times that are not greater than the excess time of using alternative

mode for the entire journey.

Decision variables:

ri 1 if itinerary i is selected, 0 otherwise

ps,t Number of vehicles parking at station s immediately after

event (s, t)

ws,t Number of users waiting to return a vehicle at station s

immediately after event (s, t)

With respect to the network flow model, the ri variables repre-

sent flows on the itinerary arcs. The ps,t variables represent flows

on the parking arcs, and the ws,t variables represent flows on the

waiting arcs. The problem can now be formulated as an MILP

model. We refer to this model as the Passive Regulation Lower

Bound (PR-LB).

minimize
∑
i∈I

Xi · ri +
∑

(s,t)∈E

Ds,t · ws,t (1)

Sub ject to∑
i∈I j

ri = 1 ∀ j ∈ J (2)

p(s,t)′ + w(s,t)′ +
∑

i∈F (s,t)

ri = ps,t + ws,t +
∑

i∈B(s,t)

ri ∀(s, t) ∈ E (3)

ps,0 = L0
s ∀s ∈ S (4)

ps,t ≤ Cs ∀(s, t) ∈ E (5)

ws,0 = 0 ∀s ∈ S (6)

ws,H = 0 ∀s ∈ S (7)

ri ∈ {0, 1} ∀i ∈ I (8)

ps,t ≥ 0 ∀(s, t) ∈ E (9)

ws,t ≥ 0 ∀(s, t) ∈ E (10)

The objective function (1) sums the excess time of the selected

itineraries and the waiting times of all users who wait to return

their vehicle at their returning station. These are the two compo-

nents of the total excess time of all system users. Constraints (2)

assure that for each journey exactly one itinerary is selected. Con-

straints (3) are vehicle inventory balance equations: for each event

(s, t) the constraint asserts that the total flow of vehicles that en-

ter (left hand side) and leave (right hand side) are equal. Recall

that (s, t)′ is the event that precedes event (s, t) at the stations,

and thus p
(s,t)′ + w

(s,t)′ is the total number of vehicles parking and

waiting at the station immediately before event (s, t). Constraints

(4) set the initial vehicle inventory of each station. Constraints (5)

limit the number of parked vehicles in a station to the station ca-

pacity. Constraints (6) and (7) state that no user is waiting to re-

turn a vehicle at the beginning or at the end of the planning hori-

zon. Constraints (8) stipulate that the itinerary decision variables

are binary. Constraints (9) and (10) are non-negativity constraints
n the number of parked vehicles and waiting users after each

vent.

In this model, the central planner may assign a user to any

f its given potential itineraries. In some cases, users may be re-

erred to relatively distant rent or return stations, merely in order

o balance vehicle inventories to the system’s benefit and not nec-

ssarily because the system cannot satisfy their demand via better

tineraries. In the next section, we extend the model to limit such

ccurrences.

Theoretically, a user may begin her ride and return the vehi-

le at any station. Therefore, the number of potential itineraries

f a journey is the square of the number of stations. However,

ost of these potential itineraries would take longer to complete

han simply using an alternative mode of transportation for the en-

ire journey (i.e., abandoning the system). Under many regulations,

t is safe to assume that users will not accept such itineraries.

n the numerical experiment reported in Section 4, we let the

entral planner consider only those potential itineraries that are

ot longer than using the alternative mode of transportation for

he entire journey. Moreover, to reduce computational efforts re-

uired to solve the PR-LB model (1)–(10), we relaxed the integrality

onstraints (8) and replaced them with non-negativity constraints.

his clearly preserves the result as a lower bound. In our nu-

erical experiment, we observed that the effect of this relaxation

n the obtained lower bound is negligible, see the discussion in

ection 4.

When restricting ourselves to itineraries that are not longer

han using the alternative mode of transportation, an alternative

ower bound on the total excess time could be obtained by in-

luding the possible waiting times at the destination within the

tineraries and by removing the waiting variables (ws,t ) from the

odel. Using such a formulation, we allow only travel and waiting

ime sequences that are together shorter than those that involve

sing the alternative mode of transportation for the entire jour-

ey. This further limits the decision space of the central planner

nd thus may result in a tighter lower bound. However, this ap-

roach produces significantly more potential itineraries (and thus

ecision variables). For the instances that we solved, we found the

otal waiting time to be negligible relative to the total excess time.

herefore, we believe that potential improvements to the lower

ound are insignificant.

Although this study focuses on parking reservation policies, the

bove model serves as a lower bound on the excess time under any

assive regulation. In particular, as the input for this model include

ll the demand for journeys the model it can also serve as a lower

ound for vehicle reservation policies, trip reservation policies, the

est of two regulation proposed by Fricker and Gast (2014), and

he pricing regulations proposed by Chemla et al. (2013b) and

frommer et al. (2014).

.3. A lower bound on the total excess time under any parking

eservation policy

In this section, we focus on a subset of all possible passive regu-

ations: parking reservation policies. A parking reservation involves

process in which, when attempting to rent a vehicle, a user de-

lares her destination, and a trip is either allowed or denied by

he system. If a trip is allowed, a parking space is reserved to the

ser at the desired destination. If a trip is denied, the user may try

o place reservations to other destinations until one is allowed. A

arking reservation policy is a set of rules that determine the fol-

owing: in which subset of trips a user is required to place reserva-

ion, whether a reservation request is allowed or denied and when

reservation in approved, whether a parking space is reserved for

he user temporarily or permanently (until her arrival at the des-

ination). The operator is allowed to overbook parking spaces that
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re currently not available. However, for a parking reservation pol-

cy to be enforceable and sustainable over time, the operator must

ot deny parking reservation requests unjustifiably. Next, we for-

ally define the set of parking reservation polices studied in this

aper.

efinition 1. (A parking reservation policy). A passive regulation

hereby the operator can deny renting a vehicle only if there

re no reservable parking spaces at the destination at the renting

ime.

Recall that under a parking reservation policy, reservations are

ot always required. However, when they are required, the con-

ition of Definition 1 must hold. For example, the CPR and NR

olicies are both legitimate parking reservation policies. In the CPR

olicy, the reservation of a reservable space is always required. The

R policy trivially satisfies the requirement of Definition 1, as un-

er this policy, no reservation is required, and thus reservations are

ever denied.

Under any parking reservation policy, the set of possible

tineraries that can materialize journey j, I j , can be partitioned

nto three subsets based on the state of the system when the jour-

ey begins. (I) Itineraries that cannot be denied under a parking

eservation policy. This set includes any itinerary with an avail-

ble vehicle at its renting station at its renting time and a reserv-

ble parking space at its returning station at the renting time. In

ddition, the itinerary that consists of the alternative mode only

s always included in this set, as it is also an itinerary that can-

ot be denied. (II) Itineraries that can be either denied or allowed

nder a parking reservation policy. This set includes any itinerary

ith available vehicles in its renting station at its renting time but

o reservable parking space at its returning station at the renting

ime. The assignment of itineraries from this set may be materi-

lized through overbooking policies or partial reservation policies,

hereby some users start their journeys without making reserva-

ions at all. (III) Itineraries that cannot be permitted under a park-

ng reservation policy. This set includes any itinerary with no avail-

ble vehicles at its renting station at the renting time. The parking

eservation policy dictates which of the itineraries in (II) are avail-

ble to the user. The user, from her side, selects the itinerary from

I) or from permitted itineraries in (II) that minimizes her excess

ime.

Note that under a general passive regulation, a system may of-

er a user any subset of itineraries through the union of (I) and (II),

s long as this subset includes the itinerary that uses the alterna-

ive mode only. However, under a parking reservation policy, the

ffered subset must include all itineraries in (I) and possibly some

tineraries in (II). Thus, under these policies, a system has less con-

rol over users’ decisions.

The PR-LB model (1)–(10) is modified such that the central

lanner may assign the shortest itinerary in (I) or a shorter

tinerary from (II) to each journey. Recall that in the original

odel, any itinerary derived from the union of (I) and (II) can

e assigned. The partitioning of potential itineraries among sets

I), (II), and (III) cannot be pre-defined as a model input. This is

ecause the selection of itineraries included in these subsets de-

ends on the system’s state at the decision time and on all de-

isions made for journeys that begin prior to that journey. In-

tead, we modify the PR-LB model, (1)–( 10), by adding decision

ariables and constraints to exclude itineraries that will not be

elected by users under any parking reservation policy. We refer

o this extended model as the Parking Reservation Policy Lower

ound model (abbreviated PRP-LB). We use the same notation as

n the PR-LB model (1)–( 10) and add the following parameters and

ecision variables:
Parameters:

O(i) A (s, t) tuple that represents the renting station and renting time

of itinerary i

D(i) A (s, t) tuple that represents the returning station and returning

time of itinerary i

J(i) The journey that can be materialized by itinerary i

T(s, t) Time of node (s, t)

S(s, t) Station of node (s, t)

Ri A set of itineraries for which a parking space may be reserved at

the returning station of itinerary i at the renting time of

itinerary i. That is, an itinerary k is in the set if:
• It is of a different journey, J(k) 
= J(i)
• It has the same returning station as itinerary i,

S(D(k)) = S(D(i)).
• The renting time of itinerary k is earlier than the renting time

of itinerary i, T (O(k)) < T (O(i))
• The returning time of itinerary k is later than the renting time

of itinerary i, T (D(k)) > T (O(i))

M A very large number (for example, twice the capacity of the

largest station)

Auxiliary decision variables:

es,t 0 if a vehicle is available at station s at time t , otherwise it can

either be 0 or 1.

fi 0 if at renting time T (O(i)) there are some reservable parking

spaces at station S(D(i)). Otherwise, it can either be 0 or 1.

The PRP-LB model can thus be written as (1)-(10) with the fol-

owing additional constraints:

O(i) + fi ≥ rk ∀i, k ∈ I j : Xi < Xk ∀ j ∈ J (11)

· (1 − es,t ) ≥ ps,t + ws,t ∀(s, t) ∈ E (12)

S(D(i)) · fi ≤ pD(i) + wD(i) +
∑
k∈Ri

rk ∀i ∈ I (13)

s,t ∈ {0, 1} ∀(s, t) ∈ E (14)

fi ∈ {0, 1} ∀i ∈ I (15)

Constraints (11) stipulate that each journey must be material-

zed via the shortest possible itinerary, i.e., the one with the short-

st excess time permitted under a parking reservation policy. For

ny itinerary k, if an itinerary i of the same journey with shorter

xcess time that belongs to (I) exists, then itinerary k cannot be se-

ected. Recall that if itinerary i is in (I), then a vehicle is available

t its renting station (eO(i)=0), and a parking space is available at

ts returning station ( fi = 0). In this case, the left hand side of (11)

s zero, and thus, rk must be zero. Note that if itinerary i is in (II),

he right hand side of (11) is greater than zero. In this case, the

odel may or may not assign itinerary k to the journey. Accord-

ng to constraints (12), a station can be considered "empty" for a

iven time only if there are no vehicles parked or waiting during

hat time. Constraints (13) assure that the fi variables are set to

ero if reservable parking spaces are available at the returning sta-

ion of itinerary i at the renting time. The decision variable ws,t is

dded to the right hand side of constraints (12) and (13) to ensure

hat the central planner will not “leave” vehicles waiting outside

f a station that is not full in order to gain more flexibility in se-

ecting possible itineraries. Constraints (14) and (15) stipulate that

ariables es,t and fi are binary.

The value of the solution of the PRP-LB model (1)–(15) provides

tighter bound on the total excess time compared to the PR-LB

odel (1)–(10), as the former is based on a super-set of its con-

traints, and parking reservation policies are a subset of any pas-

ive regulation. As in the case of PR-LB, this model was solved

hile relaxing binary variable ri. Binary variables es,t and fi were

ot relaxed because if their integrality is not imposed, the resulting

elaxation is very weak. This is due to the effects of big-M terms

n constraints (12) and (13). Indeed, this model is more difficult to

olve (see Section 4).
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In the PRP-LB model (unlike the PR-LB), if vehicles are available

at the station at a renter’s arrival time, the system must offer one

to the user. Therefore, this model cannot provide a lower bound on

the performance of vehicle or trip reservation policies. Next, we

formally prove the validity of the optimal solution value of PRP-

LB as a lower bound on the total excess time under any parking

reservation policy.

Proposition 1. For any demand realization, the total excess time as-

sociated with the optimal assignment of itineraries to journeys under

PRP-LB is not greater than the excess time under any parking reser-

vation policy.

Proof. Consider the assignment of itineraries to journeys obtained

under a parking reservation policy (satisfying the conditions of

Definition 1). We refer to this assignment as A∗. We claim that

such an assignment can be mapped to a feasible solution of PRP-

LB, and thus, the optimal solution of PRP-LB is a lower bound on

the excess time that results from any parking reservation policy.

First, note that because A∗ is a feasible assignment of itineraries

to journeys, it must satisfy constraints (2)–(10) when setting the

ri variables to represent the actual itineraries that were selected

by the users under policy A∗ and when setting the values of the

variables ps,t and ws,t to represent the number of vehicles that are

parking and waiting at the stations after each event (s, t), respec-

tively. Next, we show that the values of the binary variables es,t

and fi can be set so that the rest of the PRP-LB constraints can be

satisfied. First, we set the value of es,t as follows:

est =
{

0 ps,t + ws,t > 0
1 otherwise

.

Such an assignment would immediately satisfy constraints (12)

for each event (s, t). Similarly, we set

fi =
{

0 pD(i) + wD(i) + ∑
k∈Ri

rk < CS(D(i))

1 otherwise
,

which immediately satisfy constraints (13) for each itinerary i.

Now, it is left to show that with this assignments constraints

(11) are satisfied for each pair of itineraries of the same journey

(i, k) such that k is selected under policy A∗ and Xi < Xk, that is,

itinerary i has a shorter excess time than itinerary k. Recall that

when k is selected, rk = 1. Assume by contradiction, that constraint

(11) is violated, implying that eO(i) = 0 and fi = 0. This means that

for itinerary i, a vehicle was available, and a reservable parking

space was available at the renting time. According to Definition

1, such an itinerary cannot be denied under a parking reservation

policy. Finally, as it is shorter than itinerary k, it must have been

selected by the user, which is a contradiction. �
According to Proposition 1, the assignment of itineraries that

can result from any parking reservation policy under any de-

mand realization is a feasible solution of PRP-LP. Thus, the excess

time that can be achieved under any parking reservation policy is

bounded from below by the optimal solution of the model.

3. Parking reservation policies

The lower bounds developed in the previous section may be

used to evaluate the effectiveness of any regulation or parking

reservation policy. In this section, we introduce several parking

reservation policies. The performance of a VSS under these policies

or under any other regulation can be evaluated only with respect

to user responses to rules prescribed under a regulation. We base

our analysis, with respect to users’ response, on an axiomatic ap-

proach and model the users as rational independent agents who

strive to minimize their own excess time. However, achieving this

goal may be too difficult for many users to accomplish due to the
tochastic nature of the VSS. Therefore, we postulate a user behav-

or model that heuristically approximates this minimization prob-

em and that in fact, provides an optimal solution in most cases.

In Section 3.1, we present this user behavior model. The model

escribes the decisions taken by the users at different decision

oints. These decisions are affected by the state of the system and

he settings of the regulation. In Section 3.2, we present three par-

ial reservation policies, discuss the motivations for using them

nd explain how they are reflected in the user behavior model.

n Section 3.3, we present a utopian parking overbooking policy

hat is used to gauge the potential benefits of parking overbooking

olicies.

.1. User behavior model

The movement of users within the system depends both on its

egulation and on the state of the system (the availability of ve-

icles and parking spaces). A user who enters the system acts as

ollows. If there are no available vehicles at her origin station, she

ay either decide to go to a nearby station via an alternative mode

f transportation in search for an available vehicle, or she may de-

ide to abandon the system. An abandoning user is assumed to

ravel to her destination using an alternative mode of transporta-

ion. Note that in a modern VSS, the user can make this decision

ased on real time information on the availability of vehicles in the

tations of the system. Once a user finds an available vehicle, there

re two options: (1) A parking reservation is not required or (2) a

arking reservation is required. Under option (1), the user rents a

ehicle and travels to her destination. When the user reaches her

estination (with a vehicle), if she finds an available parking space,

he returns the vehicle and exits the system. If there are no avail-

ble parking space at the destination station, the user may decide

o wait at the station until a parking space becomes available (i.e.,

he enters a waiting queue). Alternatively, the user may decide to

oam to a nearby station in search of an available parking space.

gain, this decision is based on real time information on the avail-

bility of parking spaces in the stations. Under option (2), the user

ttempts to make a parking reservation at her destination station.

f the reservation is approved, the user makes a rent-and-reserve

ransaction and travels to her destination station. If the parking

eservation is guaranteed, the user can immediately exit the sys-

em upon reaching her destination. If the reservation is not guar-

nteed, the user travels to the returning station and proceeds as in

ption (1). If the parking reservation is not approved, the user can

ither attempt to make a reservation at another station close to

er destination, or she may decide to abandon the system. Finally,

f for one of the above reasons the vehicle is returned to a different

tation than the user’s destination station, the user uses an alter-

ative mode of transportation to reach her destination station and

hen exits the system.

This behavior model is described in Fig. 3. At decision points,

e assume that users have full knowledge of the system’s state,

ncluding inventory levels at each station and renter arrival rates

o each station (for example, the operator, or a third party, can

rovide this information via a smartphone application). Users are

ssumed to be strategic so that at decision points, they select the

lternative that minimizes their expected remaining traveling time.

n alternative user behavior model can be based on the maxi-

um utility theory, thus introducing randomness to itinerary se-

ection decisions while reflecting factors that are not included in

he current model. However, we use a deterministic itinerary se-

ection model that is based solely on excess time, as it is based on

ata that are readily available to operators. We believe that such a

odel is sufficiently accurate in providing insight into the effects

f various parking reservation polices.
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Fig. 3. User behavior model.

F

We further elaborate on the user decision processes denoted in

ig. 3 by I, II and III:

I. A renter who arrives at a station with no available vehicles

would consider a nearby station such that the total time spent

using an alternative mode of transportation to reach that sta-

tion and the traveling time from that station to the destina-

tion, is the shortest among all stations with available vehicles.

The user would choose an alternative mode of transportation

for the entire journey if it is faster than the above alternative.
II. A renter who arrives with a shared vehicle at a station with

no available parking spaces would consider a nearby station

such that the total time spent traveling with the shared vehi-

cle to that station and using an alternative mode of transporta-

tion from there to the destination is the shortest among all sta-

tions with available parking spaces. The user would choose to

wait in the station until a parking space becomes available if

the expected time for this to occur is shorter than the above

alternative.
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II. A renter who cannot make a parking reservation at the desti-

nation station would consider making a reservation at a nearby

station such that the total time spent traveling in the shared

vehicle to the chosen returning station and using an alterna-

tive mode of transportation from there to the destination is the

shortest among all stations for which it is possible to make a

parking reservation. The user would choose using an alterna-

tive mode of transportation for the entire journey if it is faster

than the above alternative.

In the user behavior model, three junctions represent the policy

settings:

• Is a parking reservation required?
• Has the reservation been approved?
• Is a vacant parking space guaranteed?

To highlight these junctions, we plot them in Fig. 3 as trape-

zoids. The NR and CPR policies are complete in the sense that un-

der each of these policies, the answer to each of the above three

questions is identical for all system users. For example, under the

CPR policy, all users are required to make a parking reservation, a

reservation is approved if a parking space is available at the return

station at the renting time and a vacant parking space is guaran-

teed to all users who can make a parking reservation.

3.2. Partial parking reservations policies

In this section, we present three types of partial parking reser-

vation policies. Each type is based on a simple, yet reasonable prin-

ciple. The common motivation for these policies is to enforce park-

ing reservations only when they are likely to have a positive effect

on the performance of the system. In the descriptions presented

below, a trip is defined as a direct ride between a pair of origin-

destination stations.

3.2.1. Trip based partial reservation policy

Under this policy, parking reservations are required only for

trips with expected traveling times shorter than a given threshold.

At the renting time, a user specifies her destination, and if the ex-

pected traveling time is shorter than the given threshold, she is re-

quired to reserve a parking space at her destination. As in the CPR

policy, if no vacant parking spaces are available at the destination

at the renting time, the transaction is denied, and the user may at-

tempt to make a reservation at a different station. A user with an

expected riding time that is longer than the threshold time is not

required to make a parking space reservation. If such a user finds

an available vehicle at her origin, she can rent it and travel to her

destination, as can be done under the NR policy. The rationale be-

hind this policy can be stated as follows: as a parking space is a

valuable resource in a VSS and a reservation practically blocks it

for the duration of the trip, the parking space should only be re-

served for short trips. Moreover, users with short travel times may

be more sensitive to excess time due to parking space shortages at

destinations.

Note that if the threshold time is set to zero, this policy coin-

cides with the NR policy. Conversely, if the threshold is set to a

large enough value, this policy coincides with the CPR policy. Dif-

ferent partial polices of this type can be obtained by setting the

value of the threshold parameter between these two extremes.

3.2.2. Station-based partial reservation policy

Under this policy, a parking reservation is required only if the

difference between the expected returning and renting rates at the

destination station over a certain time interval is higher than a

pre-specified value, referred to as the difference threshold. Other-

wise, no reservation is required. Expected renting and returning
ates can be estimated based on past transactions. The difference

s calculated for each station during predefined time intervals of

ach day. If the calculated difference is lower than the difference

hreshold, the user will behave as she does under the NR policy.

The rationale behind this policy can be stated as follows: the

robability of parking space shortages in a station grows as the

mbalance (difference) between demand rates for parking spaces

nd vehicles grows. Such imbalances may be consistent, for ex-

mple, in bike sharing stations at relatively low altitude locations,

here bicycles are more likely to be returned than rented. Alter-

atively, the imbalance may change throughout the day (e.g., at

tations located in working areas where in the morning, return-

ng rates are much more prevalent than renting rates). When the

emand rate for parking spaces (returning) is higher than the de-

and rate for vehicles (renting), users are more likely to find a

tation full. By enforcing parking reservations at such stations, the

ystem can prevent users from traveling to stations with no avail-

ble parking spaces by redirecting some users to less congested

earby stations. Such a shift is likely to occur anyway, as users

ho find a full station typically roam to a nearby station to return

heir vehicles. When parking reservations are in effect, changes in

he returning stations are determined in advance, which is likely

o reduce user excess time. In contrast, it seems less effective to

nforce parking reservations in stations that are likely to be empty

egardless.

Note that the higher the difference threshold is, the fewer

he cases in which reservations are required. For extremely high

hreshold values, the policy coincides with the NR policy, while for

xtremely low (negative) values, it coincides with the CPR policy.

.2.3. Time limited partial reservation policy

Under this policy, all users are required to make a parking

eservation as in the CPR policy, but reservations are only valid

or a limited time. After a reservation expires, the reserved parking

pace becomes available to other users, and a vacant parking space

s no longer guaranteed to the user. If the reservation expires and

o parking space is available by the time the user arrives at the

estination station, she will have to either wait by the station or

oam to a nearby station (as in the NR policy).

The rationale behind this policy can be stated as follows: by

aking a reservation, a user with a long traveling time who

eaches her destination only after her reservation expires still af-

ects the system because as long as her reservation is valid, she

ay prevent other users from making a reservation. That is, her

eservation may divert subsequent demand, which may increase

he probability of the user to find a vacant parking space, even if

er reservation has expired.

Note that if the time limit is set to a large enough value, this

olicy coincides with the CPR policy. However, if the time limit

s set to zero, the resulting policy still differs from the NR pol-

cy, as users are still required to make a reservation, and they can-

ot begin traveling to a station that is full at the renting time. In

ection 4, we compare the performance of this specific set-

ing (in which the time limit is set to zero) to the per-

ormance of the NR policy and discuss their differences and

mplications.

.3. Utopian parking space overbooking policy

In many service systems that require reservations, it is com-

on practice to allow overbooking. That is, accepting reservations

or resources that may not be available at the required time. Over-

ooking may serve as an effective policy in the presence of arrival

tochasticity or in services where customer no-shows are common.

n a VSS that practices parking reservations, no-shows are not an

ssue, as reservations are made at the renting time, and the users
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ust return the vehicle at the stated destinations. Nevertheless, in

ome cases, it may be beneficial to allow users to travel to a station

ven if it has no available parking spaces (i.e., to allow overbook-

ng), as a parking space may become available by the time the user

eaches her destination station. An effective overbooking policy is

ased on reliable forecasting that is capable of predicting such oc-

urrences.

In order to evaluate the potential benefits of overbooking poli-

ies, we envision a system that has full information regarding the

emand for vehicles at a station that allows overbooking. Over-

ooking decisions are based on this information, and thus, this ap-

roach is referred to as a utopian overbooking policy. Note, how-

ver, that this policy optimizes the service provided to each indi-

idual user individually rather than taking the system’s perspective

s is shown in the lower bounds presented in Section 2.

Under this policy, upon renting, the user is required to declare

er destination, and then the system determines whether a reser-

ation can be made or not. The system’s decision is made based

n knowledge of the current state of the destination station, in-

luding users who are traveling to that station in a vehicle, and

f all future renter arrivals to that station (including their exact

rrival times). We refer to the system decision process as a look-

head process, as the system’s decisions are made by anticipat-

ng whether a parking space will be available at the destination

tation upon arrival. The look-ahead algorithm, which is executed

ith each reservation attempt, is presented in Table 1. We use the

ollowing notation to describe it:

E A list of future events at the returning station, including return

events of reservations that have already been approved, the

reservation being requested, and all future rent events.

x.time The time of event x

x.type The type of event x

rt Return time of the user who is attempting to make a

reservation

O Occupancy at the return station (parked and waiting vehicles).

O is initialized as the actual occupancy at the time that the

reservation is attempted and is updated by the algorithm.

C Capacity of the return station

The algorithm processes the known future events in the sta-

ion and monitors anticipated future occupancy by updating the

ariable O. The occupancy is incremented after each return event

nd decremented after each rent event. If occupancy levels are ex-

ected to exceed the station’s capacity at the return time of the

urrently requested reservation or at a later time, the reservation

s denied. Note that exceeding the capacity at a later return time

mplies that accepting the current reservation will result in the

ubsequent violation of a previously placed reservation. If no such

iolations are expected, the current reservation is allowed.

Interestingly, in some rare cases, under this utopian overbook-

ng policy, users may arrive at their returning station and find no

acant parking spaces to return the vehicle to. This can occur be-

ause in the look-ahead algorithm, it is assumed that all future

emand for outgoing journeys from the destination station will

educe the occupancy of that station. However, some renters may

ecide to abandon the system due to their inability to make a
Table 1

Look-ahead algorithm.

Input: (E, rt, O,C)

While E is not empty

Remove the earliest event in E and set x as this event

If x.type =′ rent ′ and O > 0, set O = O − 1.

If x.type =′ return′ , set O = O + 1.

If O > C and x.time ≥ rt

Return “Reservation Denied.”

Return “Reservation Allowed.”

o

(

7

a

f

W

o

f

s

t

d

eservation at their destination and in turn, the occupancy of the

tation may be higher than anticipated by the algorithm. In the

imulation, the system is not penalized for parking space short-

ges. Instead, the users are assumed to leave the system at their

estination as if they are allowed to park vehicles near the sta-

ion. In other words, we allow for temporary station capacity over-

ow in our simulated system until renters remove vehicles from

he station.

We note that in a real stochastic setting, overbooking is likely

o lead to more shortage events than in this utopian policy as de-

and forecasts are less accurate. Moreover, in reality, when short-

ge events occur, users are not allowed to leave their vehicles near

he stations. Instead, they must waste more time in search of a

acant parking space or wait for a parking space to become avail-

ble. Therefore, under an actual overbooking policy, the total ex-

ess time is likely to be higher than under our utopian overbook-

ng policy.

In Table 2, we summarize the answers to each of the three

uestions that appear in the user behavior model, which character-

ze the settings of the parking reservation policies described above.

. Numerical study

In this section, we evaluate the proposed partial reservation

olicies with various threshold parameters and demand character-

stics via a discrete event simulation of VSSs. The simulation is

ased on the user behavior model presented in Section 3.1. The

esults are compared to the lower bounds devised in Section 2.

he numerical study is based on data from two real world bike

haring systems, Capital Bikeshare and Tel-O-Fun. In Section 4.1,

e describe the two bike sharing systems and the trip data used

o generate the input for our models. In Section 4.2, we present

he results of the numerical experiments and discuss their impli-

ations.

.1. Case studies

The Capital Bikeshare system was launched in September 2010.

he system operates in Washington D.C., in Arlington County and

lexandria, Virginia, and in Montgomery County, Maryland. The

perating company, Alta Bicycle Share, provides full trip history

ata that can be downloaded from the following link: http://

apitalbikeshare.com/trip-history-data. In this study, we use trip

ata from the second quarter of 2013. In this period, the system

anaged 232 operative stations with 3860 parking spaces and ap-

roximately 1750 bicycles. The average number of daily trips on

eekdays was approximately 7800.

In Fig. 4, we present a map with stations that were operative

uring the study period. On the map, we mark three station clus-

ers: Arlington, Alexandria and Crystal City. As can be observed,

n these clusters, stations are densely distributed while remaining

elatively distant from other stations in the system. Indeed, most

f the trips that originated or ended in these clusters remained

ithin this cluster. In Alexandria, approximately 90% (resp., 88%)

f the journeys that originated (resp., ended) in the cluster ended

resp., originated) in the cluster. In Crystal City, these figures are

7% and 74%, respectively, and in Arlington, these figures are 70%

nd 76%, respectively. In the following section, we present results

or the entire system and for each of the three clusters separately.

hile generating data for each cluster, we neglected trips from/to

ther stations in the system. Although the resulting data do not

ully reflect occurrences in these stations, they allow us to analyze

mall systems of varying sizes that are “close to real.”

The second system studied is the Tel-O-Fun bike sharing sys-

em in Tel-Aviv. The system was launched in April 2011, and trip

ata were collected over a period of two months at the start of

http://capitalbikeshare.com/trip-history-data
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Table 2

Settings of the various parking reservation policies.

Parking reservation

policy Parking reservation requirement

Conditions needed to approve a

parking reservation Vacant parking space guarantee

NR For none of the users – –

CPR For all users A vacant parking space at the

destination at the renting time

Yes

Partial: trip-based For users with trip times shorter than

a given threshold

A vacant parking space at the

destination at the renting time

Yes

Partial: station-based For users with a destination station

wherein the difference between the

returning and renting rates is higher

than a given threshold

A vacant parking space at the

destination at the renting time

Yes

Partial: time-limited For all users A vacant parking space at the

destination at the renting time

Only for users with trip times shorter

than the time limit

Utopian overbooking For all users The system anticipates that there will

be a vacant parking space at the

destination at the returning time

Yes, in this hypothetical utopian setting,

the user is allowed to return a vehicle

even when no parking space is available

Table 3

Results for the two real-world systems.

System Stations Initial inventory Total excess time (hours/day) Total travel time (hours/day)

NR CPR Over-booking PR-LB Ideal

Capital Bikeshare 232 Actual day 346.9 282.4 271.5 114.7 1347.0

Raviv & Kolka 183.9 141.1 132.1 58.3

Tel-O-Fun 130 Actual day 89.9 76.4 75.8 23.7 919.9

Raviv & Kolka 59.5 41.2 38.9 15.4

Fig. 4. Map of Capital Bikeshare stations (2nd quarter of 2013).
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2012. At that time, the system included 130 stations distributed

across an area of approximately 50 square kilometers, 2500 park-

ing spaces and approximately 900 bicycles. During this period, the

average number of daily trips (on weekdays) was approximately

4200.

Simulation inputs for both systems were generated as follows.

We assume that the alternative mode of transportation is walking,

which we believe is typically the case for bike sharing systems.

Riding and walking times were estimated using the Google Maps
PI program. Station capacities were retrieved from the systems’

ebsites. The arrival rates of renters during 30 minutes periods

hroughout the day were estimated by aggregating weekday trips.

ssuming Poisson demand processes, for each system we randomly

enerated 50 daily demand realizations, including renters’ arrival

imes to each station and their destinations. In order to reduce

ariation, we used the same realizations for all of the examined

olicies (Common random numbers). In addition, for each demand

ealization, we generated the input for the PR-LB and PRP-LB mod-

ls, namely the set of potential itineraries per realized journey.

Two approaches were applied in setting the initial vehicle in-

entory levels at the stations: (1) actual initial station inventories

n a randomly chosen day after the operators executed reposition-

ng activities; (2) initial inventory levels prescribed based on the

ethod proposed by Raviv and Kolka (2013). We used two differ-

nt initial inventory levels to determine the sensitivity of our re-

ults and insights to these parameters. Clearly, we could have used

ther methods known in the literature to determine the initial in-

entory, as noted in the introduction.

.2. Results

The discrete event simulation, the user behavior model and

he preprocessing of the input for the mathematical models were

oded using MathWorks MatlabTM. The PR-LB and PRP-LB models

ere solved using IBM ILOG CPLEX Optimization Studio 12.5.1. The

odes and data are available from the authors upon request.

We begin by discussing the results of the lower bounds and

he utopian overbooking policy. The results and a discussion re-

arding the partial reservation policies are presented at the end of

his section. In Table 3, we present results for the Capital Bikeshare

nd Tel-O-Fun systems. The first and second columns present the

ames of each system and the number of stations in each system,

espectively. In the third column, we show how initial inventory

evels were set. In columns four to seven, we present the aver-

ge total excess time, over 50 realizations, for the NR policy, the

PR policy, the utopian overbooking policy and the PR-LB model.
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Table 4

Statistics on the real-world system instances.

System Stations

Number of

users

Average number of

itineraries per user Initial inventory PR-LB

Number of

variables

Solution

time LP

(sec)

Solution

time MILP

(sec)

Capital Bikeshare 232 7826.4 204.5 Actual day 4,993,194 2211.87 N/A

Raviv & Kolka 1605.15 N/A

Tel-O-Fun 130 4154.9 62.7 Actual day 765,050 49.20 232.97

Raviv & Kolka 54.37 237.28

Table 5

Results for the three Capital Bikeshare clusters.

System Stations Initial inventory Total excess time (hours/day) Total travel time (hours/day)

NR CPR Over-booking PRP-LB PR-LB Ideal

Arlington 30 Actual day 2.907 2.262 2.257 1.548 1.256 28.908

Raviv & Kolka 1.600 1.129 1.137 0.800 0.660

Crystal city 15 Actual day 1.314 1.120 1.117 0.902 0.738 10.689

Raviv & Kolka 0.656 0.564 0.562 0.431 0.375

Alexandria 8 Actual day 0.589 0.352 0.347 0.261 0.214 9.119

Raviv & Kolka 0.225 0.184 0.183 0.124 0.105
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n the last column, we present the average total ideal times, over

0 realizations. Recall that the ideal time is the total traveling time

hen all journeys can be ideally served using shared vehicles from

esired origins to desired destinations. Problem instances of the

RP-LB model cannot be solved using the available computational

esources, and this lower bound is thus not presented here. We re-

isit this model when analyzing the smaller sub-systems below.

We observe from Table 3 that the lower bound on the total

xcess time provided by the PR-LB model is significantly tighter

han the trivial lower bound obtained by assuming that all of the

ourneys are materialized by their ideal itineraries, i.e., no excess

ime, as in Kaspi et al. (2014). For example, in Capital Bikeshare,

pproximately 40% of the gap between the CPR policy and the

rivial lower bound (zero excess time) is explained by the PR-LB

odel. That is, at least 40% of the excess time under the CPR policy

annot be reduced under any passive system regulation. Further-

ore, recall that in the PR-LB model, we assume that all demands

or journeys are known in advance and that a central planner de-

ermines the itinerary of each user. As this setting is unrealistic,

e can expect that the excess time under any real policy should

e much higher. In other words, a major part of the remaining

ap can be explained by these assumptions. Recall that each fig-

re shown in Table 3 is an estimation of the excess time under a

ertain reservation policy based on an average of 50 demand real-

zations. Differences between the values in each row of the table

ere tested via a one-sided sign test and were found to be signif-

cant at p − value < 0.000012.

The results presented for the PR-LB model are based on the LP

elaxation of the model. In addition, we solved the original MILP

odel for smaller instances that are based on the Tel-O-fun data.

n 97 of these 100 instances, the value of the LP relaxation solution

as found to be identical to that obtained using the MILP model,

here the latter were obtained at substantially longer processing

imes. In the remaining three instances, the lower bound obtained

sing the MILP model was slightly higher, although the difference

as negligible (less than 0.002%).

Using the initial inventories as prescribed by the method of

aviv and Kolka (2013), the excess time was significantly reduced,

s can be observed in Table 3 for all policies. Indeed, proper plan-

ing of static repositioning results with a major improvement in

he service level. Nevertheless, the results for the CPR policy and

he PR-LB model suggest that an additional substantial reduction in
he total excess time can be achieved by integrating repositioning

ctivities with an efficient passive regulation.

As can be observed in Table 3, the utopian overbooking policy

roduced only slightly better results relative to those of the CPR

olicy. This is quite surprising given the assumptions that the

topian overbooking policy is based on. That is, even with full

nowledge of the demand realizations and the use of overbooking,

significant improvement cannot be obtained. This implies that

ealistic overbooking policies are not likely to be significantly (or

t all) beneficial in terms of reducing the excess time in VSS. This

nexpected finding can be explained by the fact that in VSS, a

ositive side effect of parking space reservations is the diversion

f the demand toward less congested stations. This in turn may

ositively affect future system users who are less likely to face

ehicle and parking space shortages. Allowing overbooking reduces

his positive side effect. As effective overbooking policies are much

ore difficult to implement than the CPR policy and as the former

lso introduce additional uncertainty and thus reduce user trust in

he system, we believe that such policies should not be practiced

n VSSs.

In Table 4, we present statistics on PR-LB instances that we

olved and on solution times. We present the number of stations in

ach system, the average number of users (over the 50 demand re-

lizations), the average number of itineraries per user, the number

f variables in the linear programming model and average solution

imes for the LP relaxation and the MILP model, where itinerary

ariables are defined as binary ones. Note that the MILP model can

e solved within a reasonable timeframe only for the smaller in-

tances of the Tel-O-Fun network. The solution time of the PR-LB

odel is not of particular interest in this study, as such a model

s not supposed to be solved very often. We find solution times

o be reasonable for most of the strategic and operational scenar-

os. That is, a similar formulation can be used for other purposes,

here time considerations are more important.

Solving the PRP-LB model presented in Section 2.3 is imprac-

ical for large real-world systems due to the large number of bi-

ary variables. To obtain insights from the PRP-LB model solution,

e generated three small systems based on three clusters of sta-

ions in the Capital Bikeshare system: Alexandria with 8 stations,

rystal City with 15 stations and Arlington with 30 stations. In

able 5, we present the results for these systems. The table is

upplemented with an additional column (the seventh) that
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Table 6

Statistics for the three Capital Bikeshare clusters.

System Stations

Number of

users

Average number of

itineraries per user Initial inventory PR-LB PRP-LB

Number of

continuous

variables

Solution

time (sec)

Number of

auxiliary binary

variables

Solution

time (sec)

Arlington 30 255.6 42.2 Actual day 36,223 0.66 23,501 877.29

Raviv & Kolka 0.72 374.55

Crystal city 15 128.5 17.0 Actual day 8052 0.11 5120 14.62

Raviv & Kolka 0.11 7.44

Alexandria 8 68.6 5.9 Actual day 1601 0.03 1003 0.40

Raviv & Kolka 0.03 0.36

Fig. 5. Partial reservation policies - percentage of excess time under various settings.
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presents the lower bound on the expected total excess time pro-

duced by the PRP-LB model. The table shows that for the three

small systems, the value obtained from the PR-LB model explains

approximately 56–66% of the gap from the trivial (zero) lower

bound. However, a larger portion of this gap (67–81%) was ex-

plained by the PRP-LB value. This result further supports our belief

that no other parking reservation policy is likely to result in sig-

nificant improvements relative to those of the CPR policy. We also

note that for these systems, the excess time for the utopian over-

booking policy is sometimes slightly higher than that of the CPR

policy. Recall that each of the figures in Table 5 is an estimation

of the excess time under a certain reservation policy based on an

average of 50 demand realizations. Differences between the values

in each table row were tested via a one-sided sign test and were

found to be significant at p − value < 10−7.
In Table 6, we present statistics on the instances for the three

apital Bikeshare clusters and for the mathematical models used

o create the lower bounds. The table follows the same format as

hat of Table 4. Interestingly, it is observed that the initial inven-

ory has a significant effect on the solution time of PRP-LB. The

ptimized inventory levels obtained by the method of Raviv and

olka (2013) results with models that can be solved much more

uickly, although the dimensions of the mathematical models are

dentical.

Next, we consider the partial reservation policies presented in

ection 3.2., and we examine whether they can improve the perfor-

ance obtained by the CPR policy. In Fig. 5, we present simulation

esults for these policies. The figure includes six graphs, with one

esignated to each combination of the two studied real-world sys-

ems and the three partial policies. In each graph, two curves are
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Fig. 6. Trip based reservation policy- percentage excess time under various demand rates with initial inventory obtained from an actual day.

Fig. 7. Trip based reservation policy- percentage excess time under various trip durations with initial inventory obtained from an actual day.
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isplayed, representing the percentage of excess time obtained us-

ng the two methods for setting the initial inventories. Namely, an

ctual day, displayed in black, and the method of Raviv and Kolka

2013) shown in gray.

For each partial policy, we plot the percentage of excess time

relative to the ideal time) under various settings. For the trip-

ased partial policy, we tested 31 time thresholds in intervals of

hree minutes. For the time-limited partial policy, we tested 31

ime limits in intervals of three minutes. For the station-based par-

ial policy, we tested 11 difference thresholds of 0%, 10%,…, 100%;

he thresholds were calculated over one-hour time intervals dur-

ng the day. In order to use the same scale on the horizontal axis

or both systems, we present the percentage of stations in which

parking space reservation is required rather than the difference

hresholds.

Recall that extreme settings of such partial policies result with

he complete policies (except for the lower extreme of the time-

imited partial policy). The figure shows that as the time threshold

ncreases, the same trend appears in all six graphs, i.e., when more
eservations are required, the excess time decreases. The best per-

ormance is achieved when parking reservations are required from

ll users, i.e., under the CPR policy.

These results show that using a simple rule to define partial

arking reservation policies is not likely to produce better results

han those achieved when employing the CPR policy. We also find

hat the more users are required to reserve parking spaces, the bet-

er the performance of the system. However, in cases where it is

ossible to require reservations from only some users, it is bet-

er to apply a partial reservation policy rather than to not require

eservations at all.

Recall that under the time-limited partial reservation policy

Section 3.2.3), all users must make a reservation, but the reser-

ation expires after a given time period. When the time limit is

et to zero, users are only able to travel to stations that are not

ull at the renting time, but a parking space cannot be guaranteed

t the destination in any case. In Fig. 5, the graphs of the time-

imited policy begin at lower points relative to those of the other

wo partial policies. That is, compared to the NR policy, significant



984 M. Kaspi et al. / European Journal of Operational Research 251 (2016) 969–987

Fig. 8. Trip-based reservation policy - percentage of excess time under various capacities with initial inventories obtained from an actual day.

Fig. 9. Trip-based reservation policy - percentage of unfulfilled Rent/Return/Reserve requests with initial inventories obtained from an actual day.
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improvements can be obtained by simply redirecting users to re-

turning stations that are not full at the renting time. In fact, most

of the improvement accomplished under the CPR policy may be at-

tributed to the redirection of users to stations with vacant parking

spaces.

Next, we examine whether the above insights are relevant to

systems with other characteristics. In particular, we consider sys-

tems with the same geography and with similar demand patterns

but with different levels of congestion (i.e., offered load), with

different trip durations and with different station capacities. For

each of the systems (Tel-O-Fun and Capital Bikeshare), we gener-

ated new instances by multiplying the demand rates in all stations

by several factors, where 1 represents the original systems. Fifty

demand realizations were generated based on each of these load

multipliers.

In Fig. 6, we present the performance of the trip-based partial

reservation policy with various time thresholds and load multipli-

ers. It is observable that in both systems and under various con-
estion levels, the excess time is reduced as more reservations are

equired. This implies that the effect observed under the original

emand load is not qualitatively affected by the congestion level.

owever, as congestion increases, benefits obtained from the reser-

ation increase as well. This can be attributed to the fact that in

ore congested systems, shortage events are more likely to occur.

or the sake of brevity, we will now present only the results for the

rip-based partial reservation policy. Very similar trends were ob-

erved under the station-based and the time-limited partial reser-

ation policies.

We conducted an additional analysis, in the same spirit, to

xamine the effects of shortening or prolonging trip durations.

e used the same fifty demand realizations for each system and

hanged all trip durations for both vehicles and alternative modes

f transport. Trip durations were multiplied by several factors,

here 1 represents the original systems. The results of this experi-

ent, for the trip based partial reservation policy are presented in

ig. 7. Trends similar to those shown in Figs. 5 and 6 are exhibited,
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Fig. 10. Trip-based reservation policy - demand rates and percentage of excess time for three Capital Bikeshare stations.
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.e., the excess time decreases as more reservations are required.

n addition, the performance of each system is less sensitive to the

rip durations than to the demand rates. We note that in terms

f the offered load, changing the demand rate or the trip duration

y the same ratio is equivalent. In Kaspi et al. (2014), it is proved

hat under homogeneous demand rates, the excess time is uniquely

etermined by the offered load. Interestingly, this result does not

old when considering time heterogeneous demand rates.

Furthermore, we examined the effect of the capacities of

he stations on the performance of the system under the same

0 demand realizations. To this end, we conducted the follow-

ng test: the capacities of all stations in the system were de-

reased/increased by 25% (and rounded to the closest integer). In

ig. 8, we present the results for the trip based partial reserva-

ion policy. Similar to previous results, the excess time reduces as

he time threshold increases. That is, the same trends are observed

egardless of station capacity. For a given demand rate, as the ca-

acities of the stations are increased, the number of parking space

hortages is reduced. It is evident that the excess time under the

R policy, the various partial reservation policy settings and the
PR nearly converge to the same value as the station capacities in-

rease. As may be expected, the benefit of implementing parking

eservations increases when the parking spaces are scarcer. Again,

imilar trends are observed under the station-based and the time-

imited partial policies.

To gain a more comprehensive understanding of the strengths

nd weaknesses of parking reservation policies, we examine per-

entages of unfulfilled rent, return and parking reservation re-

uests (separately). Note that in Kaspi et al. (2014), excess time is

ound to be correlated with fulfillment ratios. In Fig. 9, we present

he percentage of unfulfilled requests in the two systems under the

rip-based partial reservation policy. We find, as expected, that as

he time threshold increases, i.e., as more reservations are required,

he ratio of unfulfilled reservations increases and the ratio of un-

ulfilled returns decreases. We note that the percentage of users

hat do not receive ideal service at desired origins and destinations

eclines due to parking reservations, but only slightly. However,

he improvement is more significant in terms of the excess time.

his implies that reservations reduce inconvenience to users as a

esult of shortages.
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Finally, we examine the effect of parking reservations on sta-

tions or regions in a system that exhibit imbalanced demands for

vehicles and parking spaces. To this end, we examined three sta-

tions within the Capital Bikeshare system: (a) the station with the

maximal total absolute difference between renting and returning

rates. The total daily demand for vehicles and parking spaces were

similar, but with temporal demand imbalances in the morning and

evening peaks; (b) the station with the maximal total difference

between renting and returning rates. This station faces excessive

demands for vehicles during the morning peak; and (c) the station

with the maximal total difference between returning and renting

rates. This station faces excessive demand for parking spaces dur-

ing the morning peak. For each of these stations, we measured

the excess time of renters (resp., returners) for whom these sta-

tions are their true origins (resp., destinations). We note that this

perspective is somewhat limited, as interactions with surrounding

stations are not taken into account. However, the effects of these

interactions are reflected in the performance of the entire system.

In Fig. 10, we present two graphs for each of the three stations.

On the left side, we present the demand rates for vehicles (renters)

and parking spaces (returners) throughout the day. On the right

side, we present average excess time of renters and returners at

the station and the average value for the entire system. Overall, we

find that for all three cases, the same trend appears once again: as

more reservations are required, the excess time decreases.

In Fig. 10(b), the returners’ excess time curve is nearly flat, that

is, for these users, the effect of implementing parking reservations

is negligible. This may be explained by the fact that this station

rarely becomes full, i.e., these users seldom face parking space

shortages. As can be expected, in such cases, parking reservation

policies are less likely to be effective.

In Fig. 10(c), we observe that the renters experience more ex-

cess time than the returners. This is counterintuitive because in

this station, the demand for parking spaces is greater than the de-

mand for vehicles. This may be attributed to the fact that actual

demand that the station faces include additional users who roam

to this station from empty nearby stations, thus limiting chances

for the original users of this station to rent vehicles. Moreover,

the excess time of the renters is also affected by the availability

of parking spaces at their destinations. Indeed, due to complex in-

teractions between stations, it is difficult to draw firm conclusions

by focusing on a single station. Nevertheless, our main conclusions

on the positive effects of parking reservations are reconfirmed.

5. Concluding remarks

This study reinforces the effectiveness of parking reservations in

VSSs as a method to improve the service provided to its users. We

find that the simplest possible parking reservation policy (namely,

the CPR) appears to be the most effective in terms of reducing

the total excess time. This was determined through empirical tests

conducted under numerous settings that are based on the geogra-

phy and demand trends of two real-world systems, diverse offered

loads, station capacities and initial inventories. Our case studies,

presented in Section 4, are based on data retrieved from bike

sharing systems. However, we believe that parking space reserva-

tions and other passive regulations are even more relevant for car-

sharing systems where the costs of active regulation (i.e., vehicle

relocations) are prohibitive.

Using a lower bound calculated by the PR-LB model, we have

demonstrated that, in our case studies, a significant share of the

excess time that can be theoretically saved under any passive sys-

tem regulation, is already saved under the CPR policy. Our ex-

tended PRP-LB model shows that other parking reservation policies

are not likely to be able to save substantially (if at all) more excess

time.
We also studied several partial reservation policies and demon-

trated that while these policies are slightly inferior to the CPR,

hey may also serve as good alternatives to the basic NR policy

n cases where the CPR cannot be implemented for some reason.

inally, we precluded reservation policies that are based on over-

ooking as a parking reservation approach that is likely to outper-

orm the CPR policy. This was achieved by showing that even un-

er a utopian scenario in which a system looks ahead into future

emand, such policies cannot significantly reduce the excess time

btained under the CPR.

The PR-LB based lower bound introduced in Section 2 can be

sed to evaluate the effectiveness of various other VSS related poli-

ies. This model reflects the fact that each journey may be assigned

o one of several itineraries. This adds flexibility to VSSs and affects

heir dynamics in a way that should not be ignored by a strategic

lanner. Although we have focused on reducing the excess time

f users, our model can be extended to accommodate other user

bjectives. That is, each potential itinerary can be assigned with a

easure that reflects a combination of several objectives. We also

uggest using our model in the future to incorporate considerations

f the operator. For example, if a car-sharing operator faces profit

osses due to possible user itinerary choices, these values can be

eighted and added to the excess time. It would also be interest-

ng to examine the effects of parking reservation policies on the

btained profit under various pricing schemes.
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